首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   28篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   17篇
  2015年   23篇
  2014年   20篇
  2013年   18篇
  2012年   35篇
  2011年   24篇
  2010年   14篇
  2009年   5篇
  2008年   13篇
  2007年   5篇
  2006年   12篇
  2005年   5篇
  2004年   10篇
  2003年   25篇
  2002年   11篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
31.
Effect of Nitric Oxide on Anammox Bacteria   总被引:1,自引:0,他引:1  
The effects of nitrogen oxides on anammox bacteria are not well known. Therefore, anammox bacteria were exposed to 3,500 ppm nitric oxide (NO) in the gas phase. The anammox bacteria were not inhibited by the high NO concentration but rather used it to oxidize additional ammonium to dinitrogen gas under conditions relevant to wastewater treatment.Nitric oxide (NO) has several different roles in bacteria, fungi, and mammals (24). In nitrogen cycle bacteria, it acts as an intermediate and cell communication/signal transduction molecule. On the other hand, NO is a highly reactive and toxic compound that contributes to ozone depletion and air pollution (5). Due to its reactive nature, many bacteria employ an arsenal of proteins (those encoded by norVW, as well as bacterial globins, heme proteins, etc.) that are used to detoxify NO to the less-reactive and more-stable nitrous oxide (N2O) (24). Still, N2O is a very effective greenhouse gas and an unfavorable constituent in the off-gases from nitrification/denitrification nitrogen removal systems (4). The presence of gene(s) encoding cytochrome cd1 nitrite reductase (EMBL accession no. CAJ74898), flavorubredoxin NorVW (accession no. CAJ73918 and CAJ73688), and bacterial hemoglobin (accession no. CAJ72702) in the genome of Kuenenia stuttgartiensis led to the proposal that NO also plays this dual role (metabolic versus toxic) in anammox bacteria (Fig. (Fig.1)1) (10, 20). This has ramifications for both application and metabolism of anammox bacteria. The source of NO in an anammox reactor could be the activity of other community members (ammonium-oxidizing or denitrifying bacteria) or high concentrations of nitrite in the influent wastewater stream. Full-scale anammox reactors typically contain a significant population of ammonium-oxidizing bacteria (AOB). In the single nitritation-anammox reactors, these carry out the conversion of 50% of the ammonium in the wastewater to nitrite (6). It has been shown that AOB may produce significant amounts of NO (2, 7), and recently it was reported that NO and N2O could be emitted from these reactors up to 0.005 and 1.2% of the total nitrogen load to the reactor, respectively (6, 23). NO may inhibit the anammox bacteria and could also be further reduced to N2O in these reactors (6, 23). It is presently unknown whether anammox bacteria contribute to the NO or N2O emissions, although it has been suggested previously that anammox bacteria do not produce N2O under physiologically relevant conditions (10). Nevertheless, if conversion of NO could be coupled to anaerobic ammonium oxidation, the toxic air pollutant NO would facilitate further removal of ammonium in full-scale anammox bioreactors. In the present study, we investigated the effect of very high NO fluxes on anammox bacteria.Open in a separate windowFIG. 1.The hypothetical anammox pathway with possible routes of NO removal. Solid black arrows: anammox pathway, including nitrite oxidation to nitrate; gray arrow, possible detoxification pathway to N2O (not observed in the bioreactor); dashed gray arrow, NO oxidation to nitrite/nitrate (not possible under anoxic conditions).NO has been described many times as a potent inhibitor of nitrogen cycle bacteria; aerobic ammonium oxidizers, nitrite oxidizers, and denitrifiers were all inhibited by concentrations as low as a few micromolar units (1, 18, 24). In a previous study, it was suggested that “Candidatus Brocadia anammoxidans” could tolerate up to 600 ppm NO (approximately 1 mg NO·day−1 NO load) (16). In the reported experiments, without direct measurement of nitrous oxide (N2O) in the effluent gas stream, it was postulated that NO was reduced to N2O (16). In the present study, we used a carefully monitored sequencing batch reactor (SBR) to further our understanding of the effect and fate of NO in a laboratory-scale anammox reactor under conditions which are relevant in wastewater treatment plants.An SBR (working volume, 3.5 liters) consisting of approximately 80% of the anammox bacterium “Candidatus Brocadia fulgida” and no detectable aerobic ammonium oxidizers (determined by fluorescence in situ hybridization (FISH) as described previously [15]) was used in the present study. Before the first introduction of NO into the reactor, the influent (synthetic wastewater) (21) was supplied to the reactor at a flow rate of 1.4 ml·min−1 with nitrite and ammonium concentrations (assayed as previously described [9]) at 45 and 39 mM, respectively (corresponding to a total of 2,370 mg N·day−1). All nitrite was consumed in the reactor, while 2 mM ammonium was still present in the effluent. For every 1 mol of ammonium, 1.22 mol of nitrite was consumed, similar to the previously determined anammox stoichiometry (19). NO was first introduced at a concentration of 400 to 600 ppm in the gas phase at a flow rate of 10 ml/min (CLD 700EL chemiluminescence NOx analyzer, detection limit of 0.1 ppm NO, with 15 ml/min Ar/CO2 as the dilution gas [a load of 25 to 28 mg NO·day−1]; EcoPhysics, Michigan). During this period, 45% (±6%) of the supplied NO was removed from the system. Initially, there was no detectable change in the ammonium and nitrite removal efficiencies and no detectable nitrous oxide (N2O) in the flue gas (analyzed with an Agilent 6890 gas chromatograph). It is most likely that NO was converted to N2, but the increase in the N2 concentrations in the off-gas was below the detection limit (1,000 ppm).At day 49, the influent NO concentration was increased to 3,500 ppm (640 mg NO·day−1 load). Simultaneously, the stirring speed of the reactor was increased from 200 to 600 rpm to enable better mass transfer to the flocculent anammox biomass. The increase in the stirring speed did not result in any disturbance in the floc size and settling ability of the biomass but did lead to a much higher level of NO removal (128 mg NO·day−1) by the anammox bacteria. The converted NO could theoretically be converted to N2O via detoxification enzymes or coupled to ammonium oxidation (Fig. (Fig.1).1). Surprisingly, there was no change in the nitrite removal capacity of the bioreactor, suggesting that NO was not a substrate preferred over nitrite. Nitrate concentrations (assayed according to the method in reference 9) were stable around 7.2 mM (±0.7 mM). Theoretically, as anammox bacteria reduce NO, they could oxidize a larger proportion of nitrite to nitrate (Fig. (Fig.1)1) to increase their capacity for CO2 fixation; however, such an increase in nitrate production was not observed (or could not be discriminated by the method used [sensitivity, 100 μM]). During this phase of the experiment, the effluent ammonium concentration gradually decreased to below the detection limit (Fig. (Fig.2).2). There was only a minimal N2O (0.6 ppm) emission from the system, and the total N2 production increased from 3,060 to 3,680 mg N2·day−1. This indicated that NO reduction was coupled to the catabolism of the anammox bacteria rather than being detoxified by anammox or other community members. To the best of our knowledge, this was the first time that such a high load of NO was not found to be toxic to the nitrogen cycle bacteria. In a previous study, an NO load of 1 mg NO·day−1 was reported to be toxic to anammox bacteria, most probably due to the fact that the experiments were conducted with biomass that had a 100-fold lower cell density and 10-fold lower activity compared to the current enrichment cultures. Furthermore, the NO conversion in the current experiments was stoichiometrically coupled to ammonium oxidation and not converted to N2O, indicating that the previously reported N2O emissions from full-scale anammox bioreactors originated not with the anammox bacteria but rather with other community members as hypothesized previously (8).Open in a separate windowFIG. 2.Ammonium concentration in the effluent of the anammox bioreactor. Dashed lines indicate the trend of effluent ammonium concentration during different phases of the reactor operation. Black arrows indicate the manipulations to influent NO stream, and the gray arrow points to an increase in the influent ammonium concentration. d, day.To determine if there could be more NO-dependent ammonium removal, the influent ammonium concentration was first increased to 41 mM (day 80) and then to 43 mM (day 81). This resulted in a slow but gradual increase in the effluent ammonium concentration, and additional ammonium did not appear to be completely converted, most probably due to NO mass transfer limitations. As a result of the higher level of ammonium removal, the observed anammox stoichiometry in the reactor decreased from 1.22 to 0.91 (nitrite/ammonium). Between days 95 and 131, the NO supply to the reactor was turned off, which resulted in an average ammonium concentration of 3.3 mM (±0.9 mM) in the effluent. Following this period, on day 132, the NO load on the reactor was increased back to 640 mg NO·day−1 (Fig. (Fig.2).2). As a result, the effluent ammonium concentration gradually decreased again to an average of 1.5 mM (±0.36 mM). The highest level of NO removal achieved in this period was 371 mg NO·day−1. When the NO supply was turned off on day 165, ammonium concentrations increased back to 3.5 mM (±0.71 mM).During the course of the experiment, the biodiversity of the reactor was monitored using FISH and 16S rRNA gene sequence analysis as described previously (15) with probes specific to eubacteria (3), Planctomycetes (13), anammox bacteria (15), “Ca. Brocadia fulgida” (11), and a variety of aerobic ammonium-oxidizing bacteria (12, 22). Before the experiments started and throughout the cultivation of the anammox bacteria with NO, the only detectable anammox species (with FISH and 16S rRNA gene sequence analysis) was “Candidatus Brocadia fulgida.”In the present study, we showed that 2 mM ammonium (4.5% of the influent concentration) could be removed by anammox bacteria via direct coupling to NO reduction. These observations support the proposal of NO as an intermediate of the anammox reaction and have two consequences for application of the anammox process for nitrogen removal. First, we obtained strong indications that previously reported N2O emissions (6, 8) from full-scale anammox reactors were not generated by anammox bacteria. In our experiments, even under a very high load of NO, there was hardly any detectable N2O in the effluent gas stream. The competition for nitrogen oxides by denitrifying and anammox bacteria needs further study but may ultimately be used to design operational conditions that would reduce or even prevent NO and N2O emissions from full-scale nitritation-anammox reactors. Second, by implementing the results of this study, in the future the anammox process could be designed to remove NO from flue gases. Since NO is mostly emitted together with O2, this could be achieved by the combination of anammox and aerobic ammonium-oxidizing bacteria, for example, with CANON (completely autotrophic nitrogen removal over nitrite)- or OLAND (oxygen-limited autotrophic nitrification-denitrification)-type reactor systems (14, 17).  相似文献   
32.

Introduction  

Rheumatoid arthritis (RA) is an inflammatory disease, which results in destruction of the joint. The presence of immune complexes (IC) in serum and synovial fluid of RA patients might contribute to this articular damage through different mechanisms, such as complement activation. Therefore, identification of the antigens from these IC is important to gain more insight into the pathogenesis of RA. Since RA patients have antibodies against citrullinated proteins (ACPA) in their serum and synovial fluid (SF) and since elevated levels of citrullinated proteins are detected in the joints of RA patients, citrullinated antigens are possibly present in IC from RA patients.  相似文献   
33.
Cochlear outer hair cells (OHCs) terminally differentiate prior to the onset of hearing. During this time period, thyroid hormone (TH) dramatically influences inner ear development. It has been shown recently that TH enhances the expression of the motor protein prestin via liganded TH receptor β (TRβ) while in contrast the expression of the potassium channel KCNQ4 is repressed by unliganded TRα1. These different mechanisms of TH regulation by TRα1 or TRβ prompted us to analyse other ion channels that are required for the final differentiation of OHCs. We analysed the onset of expression of the Ca2+ channel CaV1.3, and the K+ channels SK2 and BK and correlated the results with the regulation via TRα1 or TRβ. The data support the hypothesis that proteins expressed in rodents prior to or briefly after birth like CaV1.3 and prestin are either independent of TH (e.g. CaV1.3) or enhanced through TRβ (e.g. prestin). In contrast, proteins expressed in rodents later than P6 like KCNQ4 (∼P6), SK2 (∼P9) and BK (∼P11) are repressed through TRα1. We hypothesise that the precise regulation of expression of the latter genes requires a critical local TH level to overcome the TRα1 repression. Harald Winter and Claudia Braig contributed equally to this work.  相似文献   
34.
Interactions between flowers and their visitors span the spectrum from mutualism to antagonism. The literature is rich in studies focusing on mutualism, but nectar robbery has mostly been investigated using phytocentric approaches focused on only a few plant species. To fill this gap, we studied the interactions between a nectar-robbing hermit hummingbird, Phaethornis ruber, and the array of flowers it visits. First, based on a literature review of the interactions involving  P. ruber, we characterized the association of floral larceny to floral phenotype. We then experimentally examined the effects of nectar robbing on nectar standing crop and number of visits of the pollinators to the flowers of Canna paniculata. Finally, we asked whether the incorporation of illegitimate interactions into the analysis affects plant–hummingbird network structure. We identified 97 plant species visited by P. ruber and found that P. ruber engaged in floral larceny in almost 30 % of these species. Nectar robbery was especially common in flowers with longer corolla. In terms of the effect on C. paniculata, the depletion of nectar due to robbery by P. ruber was associated with decreased visitation rates of legitimate pollinators. At the community level, the inclusion of the illegitimate visits of P. ruber resulted in modifications of how modules within the network were organized, notably giving rise to a new module consisting of P. ruber and mostly robbed flowers. However, although illegitimate visits constituted approximately 9 % of all interactions in the network, changes in nestedness, modularity, and network-level specialization were minor. Our results indicate that although a flower robber may have a strong effect on the pollination of a particular plant species, the inclusion of its illegitimate interactions has limited capacity to change overall network structure.  相似文献   
35.
36.

Background

Management of febrile neutropenic episodes (FE) is challenged by lacking microbiological and clinical documentation of infection. We aimed at evaluating the utility of monitoring blood procalcitonin (PCT) in FE for initial diagnosis of infection and reassessment in persistent fever.

Methods

PCT kinetics was prospectively monitored in 194 consecutive FE (1771 blood samples): 65 microbiologically documented infections (MDI, 33.5%; 49 due to non-coagulase-negative staphylococci, non-CNS), 68 clinically documented infections (CDI, 35%; 39 deep-seated), and 61 fever of unexplained origin (FUO, 31.5%).

Results

At fever onset median PCT was 190 pg/mL (range 30–26''800), without significant difference among MDI, CDI and FUO. PCT peak occurred on day 2 after onset of fever: non-CNS-MDI/deep-seated-CDI (656, 80–86350) vs. FUO (205, 33–771; p<0.001). PCT >500 pg/mL distinguished non-CNS-MDI/deep-seated-CDI from FUO with 56% sensitivity and 90% specificity. PCT was >500 pg/ml in only 10% of FUO (688, 570–771). A PCT peak >500 pg/mL (1196, 524–11950) occurred beyond 3 days of persistent fever in 17/21 (81%) invasive fungal diseases (IFD). This late PCT peak identified IFD with 81% sensitivity and 57% specificity and preceded diagnosis according to EORTC-MSG criteria in 41% of cases. In IFD responding to therapy, median days to PCT <500 pg/mL and defervescence were 5 (1–23) vs. 10 (3–22; p = 0.026), respectively.

Conclusion

While procalcitonin is not useful for diagnosis of infection at onset of neutropenic fever, it may help to distinguish a minority of potentially severe infections among FUOs on day 2 after onset of fever. In persistent fever monitoring procalcitonin contributes to early diagnosis and follow-up of invasive mycoses.  相似文献   
37.
The aspartyl-protease cathepsin D (cath-D) is overexpressed and hypersecreted by epithelial breast cancer cells and stimulates their proliferation. As tumor epithelial-fibroblast cell interactions are important events in cancer progression, we investigated whether cath-D overexpression affects also fibroblast behavior. We demonstrate a requirement of cath-D for fibroblast invasive growth using a three-dimensional (3D) coculture assay with cancer cells secreting or not pro-cath-D. Ectopic expression of cath-D in cath-D-deficient fibroblasts stimulates 3D outgrowth that is associated with a significant increase in fibroblast proliferation, survival, motility, and invasive capacity, accompanied by activation of the ras-MAPK pathway. Interestingly, all these stimulatory effects on fibroblasts are independent of cath-D proteolytic activity. Finally, we show that pro-cath-D secreted by cancer cells is captured by fibroblasts and partially mimics effects of transfected cath-D. We conclude that cath-D is crucial for fibroblast invasive outgrowth and could act as a key paracrine communicator between cancer and stromal cells, independently of its catalytic activity.  相似文献   
38.
The glial cell line-derived neurotrophic factor (GDNF) is involved in the development and maintenance of neural tissues. Mutations in components of its signaling pathway lead to severe migration deficits of neuronal crest stem cells, tumor formation, or ablation of the urinary system. In animal models of Parkinson's disease, GDNF has been recognized to be neuroprotective and to improve motor function when delivered into the cerebral ventricles or into the substantia nigra. Here, we characterize the network of 43 genes induced by GDNF overproduction of neuronal progenitor cells (ST14A), which mainly regulate migration and differentiation of neuronal progenitor cells. GDNF down-regulates doublecortin, Paf-ah1b (Lis1), dynamin, and alpha-tubulin, which are involved in neocortical lamination and cytoskeletal reorganization. Axonal guidance depends on cell-surface molecules and extracellular matrix proteins. Laminin, Mpl3, Alcam, Bin1, Id1, Id2, Id3, neuregulin1, the ephrinB2-receptor, neuritin, focal adhesion kinase (FAK), Tc10, Pdpk1, clusterin, GTP-cyclooxygenase1, and follistatin are genes up-regulated by GDNF overexpression. Moreover, we found four key enzymes of the cholesterol-synthesis pathway to be down-regulated leading to decreased farnesyl-pyrophospate production. Many proteins are anchored by farnesyl-derivates at the cell membrane. The identification of these GDNF-regulated genes may open new opportunities for directly influencing differentiation and developmental processes of neurons.  相似文献   
39.
The biotechnological approach to improve performance or yield of crops or for engineering metabolic pathways requires the expression of a number of transgenes, each with a specific promoter to avoid induction of silencing mechanisms. In maize (Zea mays), used as a model for cereals, an efficient Agrobacterium tumefaciens-mediated transformation system has been established that is applied for translational research. In the current transformation vectors, the promoters of the 35S gene of the cauliflower mosaic virus and of the ubiquitin gene of maize are often used to drive the bialaphos-selectable marker and the transgene, respectively. To expand the number of promoters, genes with either constitutive or seed-specific expression were selected in Brachypodium distachyon, a model grass distantly related to maize. After the corresponding Brachypodium promoters had been fused to the β-glucuronidase reporter gene, their activity was followed throughout maize development and quantified in a fluorimetric assay with the 4-methylumbelliferyl β-D-glucuronide substrate. The promoters pBdEF1α and pBdUBI10 were constitutively and highly active in maize, whereas pBdGLU1 was clearly endosperm-specific, hence, expanding the toolbox for transgene analysis in maize. The data indicate that Brachypodium is an excellent resource for promoters for transgenic research in heterologous cereal species.  相似文献   
40.
Pollen of larch (Larix?×?marschlinsii) and Douglas-fir (Pseudotsuga menziesii) was used in homospecific and heterospecific crosses. Germination of heterospecific pollen in ovulo was reduced in post-pollination prefertilization drops. This provides evidence of selection against foreign pollen by open-pollinated exposed ovules in these two sister taxa, which share the same type of pollination mechanism. Of the other prezygotic stages in pollen-ovule interactions, uptake of pollen by stigmatic hairs did not show any selection. Pollen tube penetration of the nucellus was similar for hetero- and homospecific pollen tubes, but heterospecific tubes only delivered gametes in one cross. To test for differences in the post-pollination prefertilization drops of each species, drops were gathered and analysed. Glucose and fructose were present in similar amounts in Douglas-fir and larch, while sucrose was found in larch only. Other carbohydrates such as xylose and melezitose were species-specific. In P. menziesii, sucrose is absent due to its conversion to glucose and fructose by apoplastic invertases. In contrast, Larix?×?marschlinsii drops have sucrose because they lack apoplastic invertases. The presence of invertase activity shows that the composition of gymnosperm post-pollination prefertilization drops is not static but dynamic. Drops of these two species also differed in their calcium concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号